Difference between pages "Kits and Parts Mixers" and "RF-Amp"

From Land Boards Wiki
(Difference between pages)
Jump to navigation Jump to search
 
 
Line 1: Line 1:
[[file:K&P_ADE_Mixer-P1899-720px.jpg]]
+
[[File:RF-Amp_Front.png]]
  
== Kits and Parts Mixers - Features in Common ==
+
== RF Amplifier Features ==
  
* Available as [https://kitsandparts.com/DBDM.php Diode Ring Mixer] or [https://kitsandparts.com/ADE.php ADE-1 || ADE-6 Double Balanced Diode Ring Mixer] kits from [https://kitsandparts.com/ Kits and Parts]
+
* From [https://zl2ctm.blogspot.com/2020/11/go-qrp-portable-ssb-rig.html Charlie Morris' (ZL2CTM) Go QRP Portable SSB Rig]
* LO, IF, RF Ports are all 50Ω
+
** Solid State Design for the Radio Amateur?
* +7dBm Local Oscillator injection level
+
* +22 dB gain
** As measured into 50Ω load
+
* Input connectors: SMA or BNC
*** Mixers are not linear and loads should not be measured at the mixer
+
* 49x49mm card
* ~5dB RF > IF conversion loss in HF region
+
* 4x 4-40 mounting holes
* IF Port
 
** Full Diplexer at the IF Port
 
** Low Pass Filter can be populated if used as Product Detector / Balanced Modulator
 
* Board has pads (1206 SMT or 1/8W resistor pads) for optional Attenuators on RF & LO Ports
 
* 3 pin, 0.1" pads at board edges allow SMA edge connectors to be used
 
* Mounting holes in all 4 corners
 
  
== Kits and Parts ADE-1 Mixer ==
+
== RF Amplifier Design ==
  
* [https://kitsandparts.com/ADE.php Kits and Parts Mixer]
+
=== Schematic ===
* Mini-Circuits ADE-1+ Double Balanced Diode Mixer with built in 50Ω transformers
 
** [https://www.minicircuits.com/pdfs/ADE-1+.pdf ADE-1+ Datasheet]
 
* Not necessary to build and tune diplexer first if using [[NanoVNA]] and/or [[tinySA]]
 
** Only 1 cap adjust
 
** Inductors can also be spread/compressed if needed
 
* Available from [https://kitsandparts.com/ADE.php Kits and Parts] as bare PCB or kit of parts
 
** Bare board - $5
 
** Kit - $14
 
*** Good deal since the [https://www.mouser.com/ProductDetail/Mini-Circuits/ADE-1%2b?qs=xZ%2FP%252Ba9zWqZNkkNe3uAsRQ%3D%3D mixer itself is $6]
 
  
[[file:ADE-1.SCH.png]]
+
[[file:RF_Amp_Schematic-4.PNG]]
  
[[file:ADE-1.PCB.png]]
+
=== DC Operating Point ===
  
=== ADE-1 Schematic ===
+
* Ice = 10 mA
 +
* Ve = 0.1 * Vcc = 1.2V
  
[[file:ADE-1_Schematic.PNG]]
+
=== Input/Output Transformer ===
  
=== Performance ===
+
==== FT37-43 Toroid ====
  
[[file:Chart_dBm-to-Volts.PNG]]
+
* [http://toroids.info/FT37-43.php FT37-43]
 +
* Wideband Transformers 5 - 400 MHz
 +
* Power Transformers 0.5 - 30 MHz
 +
* 10 turns = 35uH
  
[[file:ADE-1_Performance.PNG]]
+
[[file:FT37-43_10_Turns.PNG]]
  
[[file:ADE-1_ElectricalSpecs.PNG]]
+
==== Tracks ====
  
=== Port VWSR ===
+
[[file:RF-Amp-tracks.PNG]]
  
* Measured VSWR of 2.23 at 9 MHz with NanoVNA matches spec nicely
+
==== Input Transformer ====
  
[[file:ADE-1_LO_VSWR.PNG]]
+
** Input Transformer (T1 on Charlie's - T2 on this board)
 +
***  50:75.8 Ohms = 1 : 1.23 turns ratio
 +
**** 9 turns primary, 11 turns on secondary
  
[[file:ADE-1_IF_VSWR.PNG]]
+
[[file:RF-Amp-T2.PNG]]
  
[[file:ADE-1_RF_VSWR.PNG]]
+
==== Output Transformer ====
  
=== ADE-1 Measurements ===
+
** Output transformer (T2 on Charlie's - T1 on this board)
 +
*** 200:50 Ohms = 2:1 turns ratio
 +
*** 10 turns primary (on transistor collector), 5 turns secondary (towards output)
  
==== NanoVNA Measurements ====
+
[[file:RF-Amp-T1.PNG]]
  
* No RF in
+
== LT Spice Simulation ==
* LO driven by NanoVNA Tx
 
** About -10dBm output
 
* IF output to NanoVNA Rx
 
* IF at 9 MHz
 
** VSWR: 2.233
 
** S21 Gain: -67 dB
 
  
[[file:ADE-1.NanoVNA_LO-to-IF.png]]
+
=== Transformer 35 uH ===
  
* NanoVNA
+
[[File:RF-AMP-LTSPICE_35uH.PNG]]
* No LO in
 
* RF driven by NanoVNA Tx
 
* IF output to NanoVNA Rx
 
* IF at 9 MHz
 
** VSWR: 2.216
 
** S21 Gain: -42 dB
 
  
[[file:ADE-1.NanoVNA_RF-to-IF.png]]
+
== Charlie Morris Schematics ==
  
* Scanning from 1 to 100 MHz
+
* From [https://zl2ctm.blogspot.com/2020/11/go-qrp-portable-ssb-rig.html Charlie Morris' (ZL2CTM) Go QRP Portable SSB Rig]
  
[[file:ADE-1.NanoVNA_RF-to-IF_1-100MHz.png]]
+
=== IF AMP ===
  
==== tinySA Measurements ====
+
* From Charlie's notes
 +
** DC Operating Point = 10 mA
 +
** V(emitter resistor) = 1/10 Vcc = 1.2V
 +
*** R(emitter resistor) = 1.2V/0.01A = 120 ohms
 +
* Beta DC = geometric mean min/max beta at operating current
 +
** = sqrt(100*300) = 173
 +
* Beta AC = gain bandwidth product divided by operating frequency
 +
** Assume operating frequency of 10 MHz (my IF is actually at 9 MHz)
 +
** = 300/10 = 30
 +
* VCE = 0.7V
 +
* V(emitter) = 1.2V
 +
* V(base) = V(emitter) + VCE = 1.9V
 +
* Assume current in biasing resistors = 10x current needed by DC beta
 +
** 10 mA in C-E, beta DC less = 10 mA/173 \
  
===== LO to IF port isolation =====
 
  
* Driven by [[VFO-001]] 3.3V squarewave output
 
** Signal level about 0.5 dBm
 
** CLK0 = 9 MHz into LO port
 
* Monitor IF output from mixer on tinySA
 
** Output through 20 dB attenuator (tinySA set to -20dB gain)
 
  
[[file:ADE-1.tinySA_RF-to-IF_9Mhz-center.png]]
 
  
===== Mixer Operation =====
 
  
* Mixer is driven by [[VFO-001]] 3.3V squarewave outputs
 
** Signal output levels about 0.5 dBm
 
** CLK0 = RF @7 MHz [[VFO-001]] output with 30 dB attenuator
 
** CLK1 = LO @16 MHz no attenuator
 
* Monitor IF output from mixer on [[tinySA]]
 
** IF out to tinySA with 20 dB attenuator (tinySA set to -20dB gain)
 
  
[[file:ADE-1.tinySA_LO-16MHz_RF-7MHz-to-IF_9Mhz-center.png]]
 
  
* Same but 9 MHz picked out
 
* Approx. 8 dB insertion loss
 
  
[[file:ADE-1.tinySA_LO-16MHz_RF-7MHz-to-IF_9Mhz-at9MHz.png]]
 
  
* Look at 7 MHz RF freq on IF output
 
  
[[file:ADE-1.tinySA_LO-16MHz_RF-7MHz-to-IF_9Mhz-at7MHz.png]]
 
  
* Look at 16 MHz LO freq on IF output
 
  
[[file:ADE-1.tinySA_LO-16MHz_RF-7MHz-to-IF_9Mhz-at16MHz.png]]
 
  
== Kits and Parts Diode Mixer ==
 
  
* [https://kitsandparts.com/DBDM.php Double Balanced Diode Ring Mixer Kit]
 
* Not necessary to build and tune diplexer first is using a [[NanoVNA]] or [[tinySA]] to adjust
 
* Available from [https://kitsandparts.com/ADE.php Kits and Parts] as bare PCB or kit of parts
 
** Bare board - $5
 
** Kit - $12
 
  
=== Diode Mixer Card Schematic ===
 
  
[[file:DBDM.SCH.png]]
 
  
[[file:DBDM.PCB.png]]
 
  
== Typical Application ==
 
  
* 7 MHz RF, 40 M band
 
* 16 MHz LO
 
** Si5351A square wave drive
 
* 9 MHz (difference 16-7=9) IF feeds Crystal Filter
 
** SSB or CW [[Crystal Filter Design|Crystal Filter Design]] - 9 MHz nominal
 
*** [[Crystal Filter Design#SSB 4 Crystal Filter on Kits and Parts Board|SSB4 Crystal filter]]
 
*** [[SSB6_Design|SSB6 Design Crystal filter]]
 
*** [[Crystal_Filter_Design#CW 5 Crystal Filter on Kits and Parts Board|CW5 Crystal Filter]]
 
* Use Si5351 to drive LO and/or RF ports
 
  
=== Si5351A Drive Level ===
 
  
* [https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/Si5351-B.pdf Si5351A] used to drive LO and/or RF ports
+
0
** 3 outputs
 
** LO at full level (+7dBm)
 
** RF at various levels with attenuators to drop to expected RF signal levels
 
* Don't want more than 7 dBm into LO or RF ports
 
* Two Si5351 Designs to drive ADE-1 LO or RF ports
 
** [[VFO-001]]
 
*** Uses the Si5351 without external drivers
 
*** Set drive levels to 2mA, 4mA, 6mA or 8mA
 
** [[VFO-003]] - Adds 50Ω drivers
 
*** Level is fixed
 
*** Three 74AC14 parts with 150 ohms outputs paralleled
 
*** 13 dBm output
 
*** Install 6 dBm attenuator on board (13-6=7)
 
  
==== VFO-001 drive ====
+
[[FILE:IF Amp_0046A.jpg]]
  
* The RMS value is for square-wave voltages whose pulse duration (ti) and pause (tp) have the same length:
+
[[FILE:IF Amp_0046B.jpg]]
  
[[file:RMS-SquareWave.PNG]]
+
[[FILE:IF Amp_0046C.jpg]]
  
* [https://www.redcrab-software.com/en/Calculator/Electrics/Rectangular-Voltage-RMS-Value#:~:text=The%20rms%20value%20is%20for%20square-wave%20voltages%20whose,rms%20value%20is%20equal%20to%20the%20peak%20value Square Wave Calculator]
+
[[FILE:IF Amp_0047A.jpg]]
  
[[file:RMS-SquareWave-2.PNG]]
+
[[FILE:IF Amp_0047B.jpg]]
  
* Drive level of 3.3V
+
[[FILE:IF Amp_0047C.jpg]]
  
[[file:RMS-SquareWave-3.PNG]]
+
== Video ==
  
* 100 mW is 20 dBm
+
<video type="youtube">CHdtoupH2Vg</video>
* ADE-1 needs 7 dBm level
 
* Would need a 13 dB attenuator
 
** Not actually true
 
*** Although the Si5351 datasheet says it drives 50 Ohms loads this is not exactly the case
 
*** Drive levels are controlled by the output current setting
 
* Si5351A outputs measured on [[VFO-001]]
 
** Drive Level 2 mA = 0.2 dBm
 
** Drive Level 4 mA = 6.2 dBm << Use this level
 
** Drive Level 6 mA = 9.7 dBm
 
** Drive Level 8 mA = 11.7 dBm
 
  
==== VFO-003 drive ====
+
<video type="youtube">YJTsWV2kzFY</video>
  
* [[VFO-003#Output_Power_-_Power_Calculation|VFO-003 Output_Power - Power Calculation]]
+
<video type="youtube">xPFzFhM0ojE</video>
  
* RMS Voltage of square wave
+
== Assembly Sheet ==
  
[[file:SquareWace-3.3V.PNG]]
+
* [[RF Amplifier Assembly Sheet]]
 
 
* [https://www.redcrab-software.com/en/Calculator/Electrics/Rectangular-Voltage-RMS-Value Square Wave Calculator]
 
* 2.33V^2/100 = 0.0542W
 
* Power is split between Source and load resistors
 
* 0.02714W
 
 
 
* dBm Calculation
 
 
 
* [https://www.rapidtables.com/convert/power/dbm-converter.html mW to dBm calculator]
 
 
 
[[file:SquareWave-3.3V_dBm.PNG]]
 
 
 
* Expect 14.3 dBm drive
 
* Measured 12.6 dBm with [[NanoVNA]] - Pretty close
 
* Need a 6 dB attenuator on the LO input to reduce [[VFO-003]] for Level 7 mixers (like the ADE-1 mixer)
 
** 6 dB 150-36-150
 
 
 
===== Mixer with SSB4 IF Crystal Filter =====
 
 
 
* Mixer is driven by [[VFO-001]] 3.3V squarewave outputs
 
** Signal output levels about 0.5 dBm
 
** CLK0 = RF @7 MHz [[VFO-001]] output with 20 dB attenuator
 
** CLK1 = LO @15.998,6 MHz no attenuator
 
*** Adjusted to center of the [[W7ZOI_Filters_on_Kits_and_Parts_Boards#SSB_4_Crystal_Filter_on_Kits_and_Parts_Board|SSB4 Crystal filter]]
 
* IF output from mixer to [[W7ZOI_Filters_on_Kits_and_Parts_Boards#SSB_4_Crystal_Filter_on_Kits_and_Parts_Board|SSB4 Crystal filter]] input
 
* Monitor [[W7ZOI_Filters_on_Kits_and_Parts_Boards#SSB_4_Crystal_Filter_on_Kits_and_Parts_Board|SSB4 Crystal filter]] output on [[tinySA]]
 
** No attenuator on IF output into tinySA
 
 
 
[[file:tinySA_ADE-1-MixerwCystalFilter_9MHz_center.png]]
 
 
 
* Scan from 1 to 30 MHz
 
* Note other signals are now well into the noise floor of the [[tinySA]]
 
** LO present but down
 
 
 
[[file:tinySA_ADE-1-MixerwCystalFilter_1_to_30MHz.png]]
 
 
 
* 16 MHz LO level
 
* 16 dB lower with crystal filter
 
 
 
[[file:tinySA_ADE-1-MixerwCystalFilter_16MHz_LO-Suppression.png]]
 
 
 
===== Mixer with CW5 IF Crystal Filter =====
 
 
 
* Mixer is driven by [[VFO-001]] 3.3V squarewave outputs
 
** Signal output levels about 0.5 dBm
 
** CLK0 = RF @7 MHz [[VFO-001]] output with 20 dB attenuator
 
** CLK1 = LO @15.997,9 MHz no attenuator
 
*** Adjusted to center of the [[W7ZOI_Filters_on_Kits_and_Parts_Boards#CW_5_Crystal_Filter_on_Kits_and_Parts_Board|CW5 Crystal filter]]
 
* IF output from mixer to [[W7ZOI_Filters_on_Kits_and_Parts_Boards#C_W5_Crystal_Filter_on_Kits_and_Parts_Board|CW5 Crystal filter]] input
 
* Monitor [[W7ZOI_Filters_on_Kits_and_Parts_Boards#CW_5_Crystal_Filter_on_Kits_and_Parts_Board|CW5 Crystal filter]] output on [[tinySA]]
 
** No attenuator on IF output into tinySA
 
 
 
[[file:tinySA_ADE-1-Mixerw_CW5CystalFilter_9MHz_center.png]]
 
 
 
* Scan from 1 to 30 MHz
 
* Note other signals are now well into the noise floor of the [[tinySA]]
 
** LO present but down
 
 
 
[[file:tinySA_ADE-1-Mixerw_CW5CystalFilter_9MHz_1to30MHz.png]]
 
 
 
* 16 MHz LO level
 
* 16 dB lower with crystal filter
 
 
 
[[file:tinySA_ADE-1-MixerwCW5CystalFilter_16MHz_LO-Suppression.png]]
 
 
 
===== Mixer with CW3 IF Crystal Filter =====
 
 
 
* Mixer is driven by [[VFO-001]] 3.3V squarewave outputs
 
** Signal output levels about 0.5 dBm
 
** CLK0 = RF @7 MHz [[VFO-001]] output with 20 dB attenuator
 
** CLK1 = LO @15.997,7 MHz no attenuator
 
*** Adjusted to center of the [[W7ZOI_Filters_on_Kits_and_Parts_Boards#CW3_Crystal_Filter_on_Kits_and_Parts_Board|CW3 Crystal filter]]
 
* IF output from mixer to [[W7ZOI_Filters_on_Kits_and_Parts_Boards#CW3_Crystal_Filter_on_Kits_and_Parts_Board|CW3 Crystal filter]] input
 
* Monitor [[W7ZOI_Filters_on_Kits_and_Parts_Boards#CW3_Crystal_Filter_on_Kits_and_Parts_Board|CW3 Crystal filter]] output on [[tinySA]]
 
** No attenuator on IF output into tinySA
 
 
 
[[file:tinySA_ADE-1-Mixerw_CW3CystalFilter_9MHz_center.png]]
 
 
 
* Scan from 1 to 30 MHz
 
* Note other signals are now well into the noise floor of the [[tinySA]]
 
** LO present but down
 
 
 
[[file:tinySA_ADE-1-Mixerw_CW3CystalFilter_9MHz_1to30MHz.png]]
 
 
 
* 16 MHz LO level
 
* 16 dB lower with crystal filter
 
 
 
[[file:tinySA_ADE-1-MixerwCW3CystalFilter_16MHz_LO-Suppression.png]]
 
 
 
== Bridged Tee Diplexer ==
 
 
 
Diplexor is a bandpass/band-stop filter popularized by [https://www.youtube.com/watch?v=iVUv8C-8g-Y Joe Reisert W1JR] that is used after a double Balanced Mixer to provide a 50 ohm termination to all frequencies at the mixer's IF port, and to the following amplifier stage.  Maintaining a consistent load at the mixer avoids overload and Inter-Modulation Distortion (IMD) effects that these mixers are prone to when not properly terminated.
 
 
 
=== LTSpice simulation ===
 
 
 
* 9 MHz
 
* FT37-67, 20T-12" = 8 uH
 
* T37-17, 13T-10" = 250 nH
 
* C2 adjusts peak from left to right
 
 
 
[[FILE:DIPLEXER_SPICE_SIM.PNG]]
 
 
 
* [https://www.changpuak.ch/electronics/calc_16a.php Diplexer Calculator (Bridged Tee) Diplexer Calculator]
 
* [https://www.qsl.net/g3oou/mixerterminations.html Mixer Diplexer description]
 
 
 
[[file:Diplexer.PNG]]
 
 
 
[[file:Diplexer_pass.PNG]]
 
 
 
<video type="youtube">zOk_0IiIgZY</video>
 
 
 
==== Toroid Winding Direction ====
 
 
 
* Toroids needs to be wound to match the pad locations/offsets on the PCB
 
 
 
[[file:toroid-cw.jpg]]
 
 
 
=== Adjust IF Diplexer C1 (ADE-1) ===
 
 
 
* Drive RF port from [[NanoVNA]]
 
** Nominal 0 dBm drive level
 
* IF port is output
 
** Listen on IF port on [[NanoVNA]]
 
* No drive on LO
 
* 9 MHz is IF design frequency
 
* Nano VNA set to scan from 1 Mhz to 30 MHz
 
** Shows peak expected signal around 9 MHz
 
 
 
[[file:ADE-1.NanoVNA_RF-to-IF.png]]
 
 
 
* Scan from 8 to 10 MHz
 
* Adjust C1 to peak near 9 MHz
 
** Eliminate double peaks
 
 
 
[[file:ADE-1.NanoVNA_RF-to-IF_8-10MHz.png]]
 
 
 
== ADE-1 Mixer as Product Detector ==
 
 
 
[[FILE:P1927-720PX.jpg]]
 
 
 
* RF is 9 MHz from IF stage
 
* LO is 9 MHz BFO from [[VFO-003]]
 
** Minor adjustments to get to side of the base band offset
 
* IF output is audio
 
** Mixer goes down to DC
 
* IF needs Audio Filter
 
** IF port wants to see 50 Ohm termination across output
 
** 0.33 uF cap/50 ohms terminates higher frequencies at 50 ohms
 
** [https://www.mouser.com/ProductDetail/871-B78108S1155J 1.5 mH inductor] in series as filter on audio output
 
* LTSpice Simulation
 
 
 
[[file:LP_Audio-2.PNG]]
 
 
 
* Circuit Mods
 
 
 
[[file:ADE-1_AF_Filter-2.PNG]]
 
 
 
* IF section
 
 
 
[[file:ADE-1_AF_Filter_Physicals-4.PNG]]
 
 
 
== Videos ==
 
 
 
<video type="youtube">GvadQpkZ8l0</video>
 
 
 
<video type="youtube">Mm7WfVzr1ao</video>
 
 
 
<video type="youtube">7qhY_NMNzxw</video>
 

Revision as of 09:46, 6 November 2021

RF-Amp Front.png

RF Amplifier Features

RF Amplifier Design

Schematic

RF Amp Schematic-4.PNG

DC Operating Point

  • Ice = 10 mA
  • Ve = 0.1 * Vcc = 1.2V

Input/Output Transformer

FT37-43 Toroid

  • FT37-43
  • Wideband Transformers 5 - 400 MHz
  • Power Transformers 0.5 - 30 MHz
  • 10 turns = 35uH

FT37-43 10 Turns.PNG

Tracks

RF-Amp-tracks.PNG

Input Transformer

    • Input Transformer (T1 on Charlie's - T2 on this board)
      • 50:75.8 Ohms = 1 : 1.23 turns ratio
        • 9 turns primary, 11 turns on secondary

RF-Amp-T2.PNG

Output Transformer

    • Output transformer (T2 on Charlie's - T1 on this board)
      • 200:50 Ohms = 2:1 turns ratio
      • 10 turns primary (on transistor collector), 5 turns secondary (towards output)

RF-Amp-T1.PNG

LT Spice Simulation

Transformer 35 uH

RF-AMP-LTSPICE 35uH.PNG

Charlie Morris Schematics

IF AMP

  • From Charlie's notes
    • DC Operating Point = 10 mA
    • V(emitter resistor) = 1/10 Vcc = 1.2V
      • R(emitter resistor) = 1.2V/0.01A = 120 ohms
  • Beta DC = geometric mean min/max beta at operating current
    • = sqrt(100*300) = 173
  • Beta AC = gain bandwidth product divided by operating frequency
    • Assume operating frequency of 10 MHz (my IF is actually at 9 MHz)
    • = 300/10 = 30
  • VCE = 0.7V
  • V(emitter) = 1.2V
  • V(base) = V(emitter) + VCE = 1.9V
  • Assume current in biasing resistors = 10x current needed by DC beta
    • 10 mA in C-E, beta DC less = 10 mA/173 \











0

IF Amp 0046A.jpg

IF Amp 0046B.jpg

IF Amp 0046C.jpg

IF Amp 0047A.jpg

IF Amp 0047B.jpg

IF Amp 0047C.jpg

Video

Assembly Sheet