Difference between pages "I2CIO-8" and "A Termination Insensitive Amplifier for Bidirectional Transceivers"

From Land Boards Wiki
(Difference between pages)
Jump to navigation Jump to search
 
 
Line 1: Line 1:
[[File:tindie-mediums.png|link=https://www.tindie.com/products/land_boards/i2c-demo-board-mcp23008-i2cio-8/?pt=ac_prod_search]]
+
== A Termination Insensitive Amplifier for Bidirectional Transceivers ==
  
<video type="youtube">omUSJpGLv4A</video>
+
=== Through Hole Version ===
  
[[File:I2CIO-8_X2-6000-640px.jpg]]
+
[[file:TIA_P1015_720px.jpg]]
  
== Features ==
+
=== Surface Mount Version ===
  
* 8 bits of Digital I/O
+
[[file:W7Z01_TIA_SMT_P1837-720PX.jpg]]
* I2C interface
 
* [https://ww1.microchip.com/downloads/en/DeviceDoc/21919e.pdf MCP23008] - 8-Bit I/O Expander with I2C Interface
 
* Base address = 0x20
 
* Address offset jumpers (0-7)
 
* Interrupt pin on I2C connectors
 
* Interrupt LED
 
* I2C Daisy-chain connectors
 
* 4 input (or output) jumpers
 
* 4 LEDs
 
* 2.7V to 5.5V
 
* 49x49mm form factor
 
* (4) #4-40 mounting holes
 
  
== Drivers/Example Code ==
+
== W7ZOI Design ==
  
Extensive Driver Support for Arduino, Raspberry Pi, MicroPython, ESP-32, Blue Pill Board, Cypress PSoC
+
* Paper - [http://w7zoi.net/bidirectional_matched_amplifier.pdf A Termination Insensitive Amplifier for Bidirectional Transceivers] - W7ZOI (Wes Hayward) design
 +
* [http://w7zoi.net/transistor_models_and_the_fba.pdf Transistor Models and the Feedback Amplifier]
 +
* Termination Insensitive - input impedance that does not depend upon the output load
 +
* Bi-directional - amplifiers in both directions
 +
* 50 ohms in/out
 +
* BNC or SMA Connectors
 +
* Transformer-less
 +
* Power applied to one half at a time - determines signal flow direction
 +
* ~30 mA per side
 +
* SMT or Through Hole versions
 +
** SMT version fits in 80x50x20mm aluminum case
  
* [https://github.com/land-boards/lb-Arduino-Code/tree/master/libraries/LandBoards_I2CIO8 Github repo] - Arduino Driver code
+
=== W7ZOI Schematic ===
* [https://github.com/land-boards/lb-Arduino-Code/tree/master/LBCards/I2CIO8 Github repo] - Arduino Example code
 
* [https://github.com/land-boards/lb-Python-Code/tree/master/MicroPython/ESP32/libraries/I2CIO8 Github repo] -  MicroPython Driver
 
  
== Factory Acceptance Test ==
+
[[FILE:W7ZOI_SCHEMATIC.PNG]]
  
=== Test Station Theory of Operations ===
+
=== * Use ===
  
* Test Station controls the I2C interface on the UUT
+
* Between RF/LO mixer (IF output/input) and crystal filter
* Three tests
+
* Between Crystal Filter and Product Detector / Balanced Modulator
** Internal Test
 
** External Loopback Test
 
** Bounce an LED Test
 
  
=== Test Station Set-up ===
+
[[file:FARHADPNG.PNG]]
 +
 
 +
== Schematic in KiCAD ==
 +
 
 +
* [http://land-boards.com/W7ZOI_TIA/W7ZOI_TIA_SCHEMATIC_REV1.pdf Schematic] (pdf file)
 +
* Single channel
 +
* With SPICE directives
 +
 
 +
[[file:W7ZOI_SCHEMATIC_KiCAD.PNG]]
 +
 
 +
* Both channels
 +
* With SPICE directives
 +
 
 +
[[file:W7ZOI_SCHEMATIC_KiCAD-2.PNG]]
 +
 
 +
== NGSPICE Simulation ==
 +
 
 +
* NGSPICE run from KiCAD
 +
** [http://ngspice.sourceforge.net/ngspice-eeschema.html Tutorial: ngspice simulation in KiCad/Eeschema]
 +
* +24 dB @12V
 +
* 2N3904 Alternate Node Sequence (MMBT3903 - SOT23)
 +
** KiCAD order 1 2 3 is the SPICE normal order
 +
** NGSPICE order: 3 1 2
 +
 
 +
[[file:W7ZOI_Simulation_KiCAD-3.PNG]]
 +
 
 +
* Closely matches
 +
 
 +
[[file:W7ZOI_Gainz.PNG]]
 +
 
 +
* Across Band
 +
[[file:W7ZOI_Simulation_KiCAD_S2.PNG]]
 +
 
 +
== Measurements ==
 +
 
 +
* Powering only L-R side
 +
* 30 mA power supply current
 +
* 12V
 +
 
 +
=== NanoVNA Measurements (Through-hole) ===
 +
 
 +
==== Left-to-right flow ====
 +
 
 +
* At 9 MHz
 +
 
 +
[[file:L-R_1-30MHz_meas.png]]
 +
 
 +
* S21 - sweep 1-30 MHz
 +
 
 +
[[file:L-R_1-30MHz_S21.png]]
 +
 
 +
* S11 VSWR - sweep 1-30 MHz
 +
 
 +
[[file:L-R_1-30MHz_S11.png]]
 +
 
 +
==== Right-to-Left flow ====
 +
 
 +
* At 9 MHz
 +
 
 +
[[file:R-L_1-30MHz_meas.png]]
 +
 
 +
* S21 - sweep 1-30 MHz
 +
 
 +
[[file:R-L__1-30MHz_S21.png]]
 +
 
 +
* S11 VSWR - sweep 1-30 MHz
 +
 
 +
[[file:R-L_1-30MHz_S11.png]]
 +
 
 +
=== NanoVNA Measurements (SMT) ===
 +
 
 +
* Re = 150
 +
** A bit more gain
 +
 
 +
==== Left-to-right flow ====
 +
 
 +
* At 9 MHz
 +
 
 +
[[file:L-R_1-30MHz_meas_SMT.png]]
 +
 
 +
* S21 - sweep 1-30 MHz
 +
 
 +
[[file:L-R_1-30MHz_S21_SMT.png]]
 +
 
 +
* S11 VSWR - sweep 1-30 MHz
 +
 
 +
[[file:L-R_1-30MHz_S11_SMT.png]]
 +
 
 +
==== Right-to-Left flow ====
 +
 
 +
* At 9 MHz
 +
 
 +
[[file:R-L_1-30MHz_meas_SMT.png]]
 +
 
 +
* S21 - sweep 1-30 MHz
 +
 
 +
[[file:R-L__1-30MHz_S21_SMT.png]]
 +
 
 +
* S11 VSWR - sweep 1-30 MHz
 +
 
 +
[[file:R-L_1-30MHz_S11_SMT.png]]
 +
 
 +
== CAD ==
 +
 
 +
=== Through Hole CAD ===
 +
 
 +
* 2.4" x 2.4"
 +
* 2.0 hole center-to-center
 +
 
 +
[[FILE:W7ZOI_CAD.PNG]]
 +
 
 +
=== SMT CAD ===
 +
 
 +
[[FILE:W7ZOI_TIA_SMT_CAD.PNG]]
 +
 
 +
== Test Procedure ==
 +
 
 +
=== Test Equipment ===
  
* Uses [[Arduino_Based_Test_Station|ODAS Test Station V2]]
 
 
* Unit Under Test (UUT)
 
* Unit Under Test (UUT)
* Attach Host Computer USB to the Arduino NANO on the Test Station
+
* [[NanoVNA]]
* Run puTTY on the Host Computer
+
* [[RF_Attenuators#Triple_Attenuator|30 dB attenuator]] tap on Triple attenuator
** 9600 baud
+
* [[NanoVNA#RF_Demo_Kit|RF Demo Kit]]
 +
* (3) SMA to SMA Male:Male cables
 +
* [[Benchtop Power Supply DPS3005]]
 +
** 12V Power Supply
 +
** Current Limit set at 100 mA
 +
 
 +
=== Calibrate NanoVNA ===
  
=== Card Selection ===
+
* Cable #1 from RF out of NanoVNA (upper jack) to left side of 30 dB attenuator
* puTTY will display the menu
+
* Cable #2 from right side of 30 dB attenuator to left side of RF Demo Kit
<pre>
+
** Multiple positions for open, through, and short
Checking if EEPROM is present on UUT...EEPROM is not present on UUT
+
* Cable #3 from right side of RF Demo Kit to input of NanoVNA (lower jack)
Count of I2C devices in range 0x20-0x27 on UUT = 1
 
Detected MCP23008
 
Select the board type (Other)
 
1 - I2CIO8 board
 
2 - I2CIO8X board
 
Select board >
 
</pre>
 
  
* Select 1
+
=== Test UUT ===
  
<pre>
+
* Replace RF Demo Kit with UUT
Init I2CIO-8 card
+
* Test each direction at a time
C=Card Tests, D=Direct, E=EEPROM, I=access Internal DIGIO32
+
** Power up Left to right, test
</pre>
+
** Power up right to left, test
 +
* Should show gain of about 20 dB at 10  MHz
  
=== Running Card Test ===
+
== Enclosure ==
  
* Select Card Tests = "C"
+
* The SMT version is designed to fit in a [https://www.ebay.com/sch/i.html?_from=R40&_trksid=p2047675.m570.l1313&_nkw=80x50x20mm&_sacat=0 80x50x20mm Extruded Aluminum Project Box]
* Select Run Tests = "T"
 
* Move jumper across the 4 jumper pins H5-H8
 
* LEDs will correspond
 
* INT LED will blink on/off
 
* Observe test results
 
<pre>
 
L=Loop/S=Single, T=Test, B=Bounce LEDs, I=UUT Int'l Test, X=eXit sub-menu
 
Testing UUT = I2CIO-8
 
Test PASS = 1, FAIL = 0
 
</pre>
 
* Hit ENTER to display menu
 
<pre>
 
L=Loop/S=Single, T=Test, B=Bounce LEDs, I=UUT Int'l Test, X=eXit sub-menu
 
</pre>
 
  
=== Running Internal Tests ===
+
[[file:Dimensions_80x50x20.jpg]]
  
* Remove loopback cable
+
== Videos ==
* Select Card Tests = "C"
 
* Select Run Tests = "I"
 
* Observe test results
 
<pre>
 
L=Loop/S=Single, T=Test, B=Bounce LEDs, I=UUT Int'l Tests, X=eXit sub-menu
 
UUT Internal card tests
 
Test PASS = 2, FAIL = 0
 
</pre>
 
* Hit ENTER to display menu
 
<pre>
 
L=Loop/S=Single, T=Test, B=Bounce LEDs, I=UUT Int'l Test, X=eXit sub-menu
 
</pre>
 
  
=== Running Blink LED Test ===
+
<video type="youtube">JjcxEYk9atg</video>
  
* Select Card Tests = "C"
+
<video type="youtube">CpQK0W7TY5g</video>
* Select Run Tests = "B"
 
* Observe LEDs scanning on the 4 LEDs on the card
 
<pre>
 
L=Loop/S=Single, T=Test, B=Bounce LEDs, I=UUT Int'l Test, X=eXit sub-menu
 
Bounce a bit across outputs
 
Bouncing LEDs I2CIO8 - any key to stop
 
</pre>
 
* Hit ENTER to display the menu
 
<pre>
 
Finished bouncing LEDs
 
</pre>
 
  
=== Reference ===
+
<video type="youtube">7TtKE39TWpI</video>
  
* [[Arduino Based Test Station]]
+
<video type="youtube">T8lq8Qtjqe0</video>
* [https://github.com/land-boards/lb-Arduino-Code/tree/master/LBCards/ODAS/ODASTESTER ODAS Tester Github Repo]
 
  
 
== Assembly Sheet ==
 
== Assembly Sheet ==
  
* [[I2CIO8-X Assembly Sheet]]
+
* [[W7ZOI TIA Assembly Sheet - Rev 1]] - Through-hole version
 +
* [[W7ZOI TIA SMT Assembly Sheet - Rev 1]] - SMT version

Revision as of 11:32, 26 March 2022

A Termination Insensitive Amplifier for Bidirectional Transceivers

Through Hole Version

TIA P1015 720px.jpg

Surface Mount Version

W7Z01 TIA SMT P1837-720PX.jpg

W7ZOI Design

W7ZOI Schematic

W7ZOI SCHEMATIC.PNG

* Use

  • Between RF/LO mixer (IF output/input) and crystal filter
  • Between Crystal Filter and Product Detector / Balanced Modulator

FARHADPNG.PNG

Schematic in KiCAD

  • Schematic (pdf file)
  • Single channel
  • With SPICE directives

W7ZOI SCHEMATIC KiCAD.PNG

  • Both channels
  • With SPICE directives

W7ZOI SCHEMATIC KiCAD-2.PNG

NGSPICE Simulation

W7ZOI Simulation KiCAD-3.PNG

  • Closely matches

W7ZOI Gainz.PNG

  • Across Band

W7ZOI Simulation KiCAD S2.PNG

Measurements

  • Powering only L-R side
  • 30 mA power supply current
  • 12V

NanoVNA Measurements (Through-hole)

Left-to-right flow

  • At 9 MHz

L-R 1-30MHz meas.png

  • S21 - sweep 1-30 MHz

L-R 1-30MHz S21.png

  • S11 VSWR - sweep 1-30 MHz

L-R 1-30MHz S11.png

Right-to-Left flow

  • At 9 MHz

R-L 1-30MHz meas.png

  • S21 - sweep 1-30 MHz

R-L 1-30MHz S21.png

  • S11 VSWR - sweep 1-30 MHz

R-L 1-30MHz S11.png

NanoVNA Measurements (SMT)

  • Re = 150
    • A bit more gain

Left-to-right flow

  • At 9 MHz

L-R 1-30MHz meas SMT.png

  • S21 - sweep 1-30 MHz

L-R 1-30MHz S21 SMT.png

  • S11 VSWR - sweep 1-30 MHz

L-R 1-30MHz S11 SMT.png

Right-to-Left flow

  • At 9 MHz

R-L 1-30MHz meas SMT.png

  • S21 - sweep 1-30 MHz

R-L 1-30MHz S21 SMT.png

  • S11 VSWR - sweep 1-30 MHz

R-L 1-30MHz S11 SMT.png

CAD

Through Hole CAD

  • 2.4" x 2.4"
  • 2.0 hole center-to-center

W7ZOI CAD.PNG

SMT CAD

W7ZOI TIA SMT CAD.PNG

Test Procedure

Test Equipment

Calibrate NanoVNA

  • Cable #1 from RF out of NanoVNA (upper jack) to left side of 30 dB attenuator
  • Cable #2 from right side of 30 dB attenuator to left side of RF Demo Kit
    • Multiple positions for open, through, and short
  • Cable #3 from right side of RF Demo Kit to input of NanoVNA (lower jack)

Test UUT

  • Replace RF Demo Kit with UUT
  • Test each direction at a time
    • Power up Left to right, test
    • Power up right to left, test
  • Should show gain of about 20 dB at 10 MHz

Enclosure

Dimensions 80x50x20.jpg

Videos

Assembly Sheet