Difference between revisions of "RF-Amp"

From Land Boards Wiki
Jump to navigation Jump to search
Line 75: Line 75:
 
=== Input/Output Transformers ===
 
=== Input/Output Transformers ===
  
==== FT37-43 Toroid ====
+
* [http://toroids.info/FT37-43.php FT37-43 Toroid]
 
 
* [http://toroids.info/FT37-43.php FT37-43]
 
 
* Wideband Transformers 5 - 400 MHz
 
* Wideband Transformers 5 - 400 MHz
 
* Power Transformers 0.5 - 30 MHz
 
* Power Transformers 0.5 - 30 MHz

Revision as of 13:50, 6 November 2021

RF-Amp Front.png

RF Amplifier Features

RF Amplifier Design

Schematic

RF Amp Schematic-4.PNG

LT Spice Simulation

RF-AMP-LTSPICE XFMRS.PNG

Charlie Morris Design

Beta DC

  • Geometric mean min/max beta at operating current
    • =sqrt(100*300) = 173

Beta AC

  • Gain bandwidth product divided by operating frequency
    • Assume operating frequency of 10 MHz (my IF is actually at 9 MHz)
    • = 300/10 = 30

DC Operating Point

  • CE current 10 mA
    • If Vce = 6V, this is 60 mW power dissipation
  • Assume Ve (voltage across emitter resistor) = 1/10 Vcc = 12V/10 = 1.2V
      • R3 is Re (emitter resistor) = 1.2V/0.01A = 120 ohms
  • VCE = 0.7V (typical from data sheet)
  • V(emitter) = 1.2V
  • V(base) = V(emitter) + VCE = 1.9V
  • Assume current in biasing resistors = 10x current needed by DC beta
    • 10 mA in C-E, beta DC less = 10 mA/173 = 48 uA
    • 10x the current in the biasing resistors = 480 uA (calculated)
  • R2 is 1.9V at 480 uA = 3.9K use 3.3K
    • Actual current will be 1.9V/3.3 ohms = 634 mA
  • R1 sources current to R2 and transistor base
    • Voltage = Vcc (12V) - 1.9V = 10.1V
    • Current = 576 uA + 57 uA = 634 uA
    • R1 = 10.1 / .634 mA = 15.9K, use 15k

Input resistance

  • Xc for 0.1uF cap from emitter to ground
    • C=0.1uF
    • F=10MHz
    • 1/2*pi*F*C = 0.16 ohms
  • Parallel resistors R1, R2 paralleled with transistor input impedance
    • R1=15K, R2=3.3K
    • Transistor resistance = Beta AC (30) times re
      • re = 26 / Ie (10 mA in mA) = 26/10 = 2.6
      • Beta AC * re = 30*2.6 = 78 ohms - predominates
    • All in parallel are 75.8 ohms

Input/Output Transformers

  • FT37-43 Toroid
  • Wideband Transformers 5 - 400 MHz
  • Power Transformers 0.5 - 30 MHz
  • Nominal example - 10 turns = 35uH

FT37-43 10 Turns.PNG

Tracks

RF-Amp-tracks.PNG

Input Transformer

  • Input Transformer (T1 on Charlie's - T2 on this board)
  • 50:75.8 Ohms = 1 : 1.23 turns ratio
  • n = sqrt(Zout/Zin) = sqrt(75.8/50) = 1.23
    • 9:11 = 1:1.22 (close enough)
    • 9 turns primary
      • 9 turns on FT37-43 = 38.3 uH
    • 11 turns on secondary
      • 11 turns on FT37-43 = 42.4 uH

RF-Amp-T2.PNG

Output Transformer

  • Output transformer (T2 on Charlie's - T1 on this board)
  • T2 - different than Charlie's design since my Crystal filters are all 50 ohms in/out
  • 200:50 ohms
  • n = sqrt(200/50) = 2:1
  • 10:5 turns
    • 10 turns primary (on transistor collector)
      • 10 turns = 35 uH
    • 5 turns secondary (towards output)
      • 5 turns = 8.75 uH

RF-Amp-T1.PNG

Charlie's Notes

IF Amp 0046A.jpg

IF Amp 0046B.jpg

IF Amp 0046C.jpg

IF Amp 0047A.jpg

IF Amp 0047B.jpg

IF Amp 0047C.jpg

Video

Assembly Sheet