Difference between revisions of "PiPicoMite01"

From Land Boards Wiki
Jump to navigation Jump to search
Line 486: Line 486:
 
==== SWLEDX8.bas ====
 
==== SWLEDX8.bas ====
  
* [https://github.com/land-boards/RasPiPico/blob/main/PicoMite_MMBASIC/PicoMite_VGA/Land%20Boards%20BASIC%20Programs/On-Board_Digital_IO/PiPicoMite01/SWLEDX8.bas SWLEDX8.bas] 8 Ins, 8 outs example using [[SWLEDX8]] card
+
* [https://github.com/land-boards/RasPiPico/blob/main/PicoMite_MMBASIC/PicoMite_VGA/Land%20Boards%20BASIC%20Programs/On-Board_Digital_IO/PiPicoMite01/SWLEDX8.bas SWLEDX8.bas] 8 Ins, 8 outs example
 
 
[[file:PiPicoMite01_P1080361_720px.jpg]]
 
  
 
==== GPIO16_Bits.bas ====
 
==== GPIO16_Bits.bas ====

Revision as of 14:21, 3 July 2022

Tindie-mediums.png

PiPicoMite01 Rev2 P18315-720px.jpg

Features

  • Raspberry Pi Pico
    • All Pico pins brought to headers
    • Pico pin marking on rear
  • VGA
    • 640x480 monochrome resolution
    • 320x240 colour resolution
    • 1:2:1 - R:G:B - 16 colours
  • PS/2 Keyboard
    • 5V to keyboard with voltage translator
    • Does not require a keyboard that runs at 3.3V
  • SD Card
    • Full size card
    • Up to 32GB
    • FAT32 format
  • Stereo audio
    • PWM with filter
    • 3.5mm jack
  • 16-bit General Purpose I/O (GPIO)
    • MCP23017 port expander
    • On Pico I2C1 (I2C2 from MMBASIC)
    • 2x10 0.1" pitch header
    • Jumper selectable terminators
  • I2C0 connector (Rev 2 and later)
    • Requires external I2C terminators
  • Power options
    • 5V power input
      • USB Micro on Pico card
      • USB B
      • 0.1" pitch header
    • 3.3V output header
  • 120mmx70mm outline
  • (4) 6-32 Mounting holes

BASIC Interpreter

The PicoMiteVGA boots straight into the MMBasic prompt. At which point you can enter, edit and save the program, test BASIC commands and run the program.

MMBasic is a Microsoft BASIC compatible implementation of the BASIC language, originally written by Geoff Graham and enhanced and ported to the Pico by Peter Mather, who also designed the original PicoMite on which thiis design is based. It is full featured with floating point, 64-bit integers and string variables, long variable names, arrays of floats, integers or strings with multiple dimensions, extensive string handling and user defined subroutines and functions. Typically it will execute a program up to 100,000 lines per second. Embedded compiled C programs can be used for even higher performance.

Using MMBasic you can use communications protocols such as I2C or SPI to get data from a variety of sensors. You can save data to an SD card, measure voltages, detect digital inputs and drive output pins to turn on lights, relays, etc.

The emphasis with MMBasic is on ease of use and development. The development cycle is very fast with the ability to instantly switch from edit to run. Errors are listed in plain English and when an error does occur a single keystroke will invoke the built in editor with the cursor positioned on the line that caused the error.

Pinout

PiPico Pins.PNG

Pin Marking on Rear (Rev 2)

PiPicoMite01 REAR 3D.png

Schematic

Rev 1 Connectors

Rev 2 Connectors

  • The following are for Rev 2 and later boards

PicoMite01 Rev2 CAD.PNG

J1 - MCP23017 - 16-bit GPIO

  • MCP23017 Datasheet
  • 2x10 header
    • 16 bits of Digital I/O
      • A0 silkscreen marking = GPA0, etc.
    • (2) Power
    • (2) Ground
  • On I2C2 pins (I2C1 on Pico)
    • SetPin BASIC code
SetPin GP14, GP15, I2C2

PiPicoMite01 J1 GPIO.PNG

  • Initialization code
  • Set all pins to outputs
MCP23017_I2CADR   = &H20
MCP23017_IODIRA   = &H00
MCP23017_IODIRB   = &H01
MCP23017_IPOLA    = &H02
MCP23017_IPOLB    = &H03
MCP23017_GPINTENA = &H04
MCP23017_GPINTENB = &H05
MCP23017_DEFVALA  = &H06
MCP23017_DEFVALB  = &H07
MCP23017_INTCONA  = &H08
MCP23017_INTCONB  = &H09
MCP23017_IOCON    = &H0A
MCP23017_GPPUA    = &H0C
MCP23017_GPPUB    = &H0D
MCP23017_INTFA    = &H0E
MCP23017_INTFB    = &H0F
MCP23017_INTCAPA  = &H10
MCP23017_INTCAPB  = &H11
MCP23017_GPIOA    = &H12
MCP23017_GPIOB    = &H13
MCP23017_OLATA    = &H14
MCP23017_OLATB    = &H15

SetPin GP14, GP15, I2C2
I2C2 OPEN 400, 100
I2C2 WRITE MCP23017_I2CADR, 0, 2, MCP23017_IODIRA, &H00
I2C2 WRITE MCP23017_I2CADR, 0, 2, MCP23017_IODIRB, &H00
  • Write alternating patterns on output pins
' Alternating patterns
I2C2 WRITE MCP23017_I2CADR, 0, 2, MCP23017_OLATA, &H55
I2C2 WRITE MCP23017_I2CADR, 0, 2, MCP23017_OLATB, &HAA
Pause 1000
I2C2 WRITE MCP23017_I2CADR, 0, 2, MCP23017_OLATA, &HAA
I2C2 WRITE MCP23017_I2CADR, 0, 2, MCP23017_OLATB, &H55
Pause 200
I2C2 WRITE MCP23017_I2CADR, 0, 2, MCP23017_OLATA, &H00
I2C2 WRITE MCP23017_I2CADR, 0, 2, MCP23017_OLATB, &H00

J2 - VGA

The VGA output is 640 x 480 pixels in monochrome mode or 320 x 240 pixels in colour mode with 16 colours (1 bit for red, 2 bits for green and 1 bit for blue). The VGA output is generated using the second CPU on the RP2040 processor plus one PIO channel so it does not affect the BASIC interpreter which runs at full speed on the first CPU. A handfull of components (resistors and a couple of diodes) is all that is required to connect the VGA monitor.

From within your BASIC program you can turn pixels on/off and draw lines, boxes and circles in any colour. Text can be positioned anywhere on the screen and displayed in any colour in a variety of fonts.

The built-in editor within MMBasic works perfectly with the VGA monitor and PS2 keyboard to allow programs to be edited (with colour coded text) and saved to an SD card.

Mode 1 (640x480 monochrome) and mode 2 (320x240 16-colours).

OPTION COLOURCODE ON

PiPicoMite01 J2 VGA.PNG

J3 - 3.3V Power Out

PiPicoMite01 J3 3p3V.PNG

J4 - Audio

OPTION AUDIO GP6, GP7
PLAY WAV "file.wav"
PLAY STOP

PiPicoMite01 J4 Audio.PNG

J5 - USB B Power Connector

  • In parallel with J6

PiPicoMite01 J5 5V-Power.PNG

  • Full size USB B connector
  • No USB signal connections, just used for power

J6 - 5V Input

PiPicoMite01 J6-5V.PNG

  • Useful to power the card from external 5V
  • Use in place of J5

J7 - PS/2 Keyboard

The PS2 keyboard connects to the Raspberry Pi Pico via a level shifter and works as a normal keyboard with the function keys and arrow keys fully operational. It can be configured for the standard US layout used in the USA, Australia and New Zealand or specialised layouts used in the United Kingdom, Germany, France and Spain.

  • 5V keyboard

PiPicoMite01 J7 PS2-Keyboard.PNG

J8 - I2C0, UART0 (RTC, etc.)

PiPicoMite01 J8 I2C.PNG

  1. I2C0SCL. UART0_TX (GP1)
  2. I2C0SDA. UART0_RX (GP0)
  3. VCC
  4. GND

Can use Real Time Clocks using the PCF8563, DS1307, DS3231 or DS3232 chips means that the time is always accurately known.

option system i2c gp0, gp1

J9, J10 Pico Connectors

  • Pico pins are brought out to 1x20 pin headers J9, J10

PiPicoMite01 J9-10 PiPico.PNG

Pico Function Mapping

GP FUNCTION PICO PIN GP FUNCTION PICO PIN
GP0 J8-2 (I2C0_SDA) 1 GP16 VGA_HSYNC 21
GP1 J8-1 (I2C0_SCL) 2 GP17 VGA_VSYNC 22
GND 3 GND 23
GP2 MCP23017_INTA (H2) 4 GP18 VGA_BLU 24
GP3 SPARE GPIO 5 GP19 VGA_GRN_LO 25
GP4 SPARE GPIO 6 GP20 VGA_GRN_HI 26
GP5 SPARE GPIO 7 GP21 VGA_RED 27
GND 8 GND 28
GP6 AUDIO-L 9 GP22 SPARE GPIO 29
GP7 AUDIO-R 10 RUN 30
GP8 PS2_CLK 11 GP26 SPARE GPIO 31
GP9 PS2_DATA 12 GP27 SPARE GPIO 32
GND 13 GND 33
GP10 SD_SCK 14 GP28 SPARE GPIO 34
GP11 SD_MOSI 15 ADCREF 35
GP12 SD_MISO 16 3.3V POWER_3.3V 36
GP13 SD_SLVSEL 17 VEN3 37
GND 18 GND 38
GP14 I2C1_SDA (MCP23017) 19 VSYS PS2_5V 39
GP15 I2C1_SCL (MCP23017) 20 VBUS 40

SD1 - SD Card

The PicoMiteVGA firmware reserves eight program storage "slots" in the Raspberry Pi Pico flash memory. Programs can be saved and retreived from these without the need for any additional storage.

For more storage SD cards can be connected with full support for these built into MMBasic including the ability to open files for reading, writing or random access and loading and saving programs. SD cards connect directly to the Raspberry Pi Pico and the firmware will work with cards up to 32GB formatted in FAT16 or FAT32. The files created can be read and written on personal computers running Windows, Linux or the Mac operating system.

OPTION SDCARD GP13, GP10, GP11, GP12

PiPicoMite01 J1 SD Card.PNG

H1 - I2C Terminators

PiPicoMite01 H1 I2CTerms.PNG

  • 2.2K terminators
  • Install shunts to terminate SDA, SCL signals that go to the on-board MCP23017 I2C Expander
  • Terminators are normally installed at the end of daisy-chained cards
  • I2C1 on Raspberry Pi Pico pins
  • I2C2 from MM BASIC
  • MM BASIC example commands
DIM BUFF(1)
SETPIN GP14, GP15, I2C2
I2C2 OPEN 400, 100
I2C2 WRITE &H20, OC, LEN, B0[, B1...]
I2C2 READ &H20, OX, LEN, BUFF()
  • &H20 - I2C Address 0x20
  • OC: 0=terminate after, 1=chain next
  • len - Length of buffer (normally 1 for receive)
  • B0,B1... Bytes to send
  • BUFF() - receive buffer

H2 - MCP23017 - I2C Interrupt

PiPicoMite01 H2 I2C-Interrupt.PNG

  • Install shunt to connect INTA interrupt from MCP23017 to GP2 on Pico
  • MCP23017 interrupts can be set to generate interrupts on INTA pins for both A abd B ports
  • No Pull-up on card

Configuration Options

> OPTION LIST
OPTION COLOURCODE ON
OPTION KEYBOARD US
OPTION SDCARD GP13, GP10, GP11, GP12
OPTION AUDIO GP6,GP7, ON PWM CHANNEL 3
option system i2c gp0, gp1

Mechanicals

PicoMite01 Rev2 Mechs.PNG

PicoMite Software

PicoMite Source code

On-board 16-bit Port Expander Example Code

Example code that exercises the MCP23017 Port Expander on the PiPicoMite01 card.

MCP23017_Blinkey.bas

MCP23017_Bits.bas

GPIO16-01.bas

  • GPIO16-01.bas
    • Set all 16 GPIO pins as outputs
    • Write alternate patterns, bounce a 1 across the outputs

SWLEDX8.bas

GPIO16_Bits.bas

  • MCP23017_Bits.bas - Control the I/O direction by bits
    • Similar in function to pinMode on Arduino

GPIO16_Bits.bas

Land Boards Card Test Code

MCP23017 on external cards

Code to test Land Boards cards which have MCP23017 parts.

MCP23008 Demo Code

Blocks (Tetris)

> memory
Program:
  13K (10%) Program (485 lines)
  95K (90%) Free

RAM:
   8K ( 5%) 31 Variables
   0K ( 0%) General
 132K (95%) Free

Pico Tetris.jpg

MMBASIC vs MicroPython Performance

Download MMBASIC

  • Tested with "VGA only" versions
  • If the Pico does not already have MMBASIC installed
  • Hold button on Pico while plugging in USB Micro to PC
  • Drive will open
  • Drop VGA uf2 onto Drive
  • System will reboot
> print mm.ver
 5.070502
  • Run TeraTerm
    • Connect to Serial

Configure MMBASIC

  • Setups
    • Can copy-paste a line at a time into TeraTerm
    • First two will reboot card
OPTION SDCARD GP13, GP10, GP11, GP12
OPTION AUDIO GP6,GP7
OPTION COLOURCODE ON
  • If an external RTC is attached to J1
OPTION SYSTEM I2C GP0,GP1
  • Remove USB power
  • Install SD card
  • Apply USB power

CircuitPython on PiPicoMite0x Cards

  • The PiPicoMite0x cards can run CircuitPython with some limitations
  • Card features for CircuitPython application
    • SD support
    • 1x MCP23017, 16-bit port expander
      • 2x10 header
    • 5V input
    • External I2C
  • Card does not have support for
    • VGA
    • PS/2
    • Audio

CircuitPython Digital I/O

# digitalWrite(bit,value)
#    bit = 0-15
#    value = 0, 1
# digitalRead(bit)
#    bit = 0-15
#    returns 0, 1
# pinMode(bit,value)
#    bit = 0-15
#    value = INPUT, OUTPUT, INPUT_PULLUP
# pinMode(bit,value)

CircuitPython SD Card

# OPTION SDCARD GP13, GP10, GP11, GP12
# CS = GP13
# SCK = GP10
# MOSI = GP11
# MISO = GP12

spi = busio.SPI(board.GP10, MOSI=board.GP11, MISO=board.GP12)
cs = board.GP13

sdcard = sdcardio.SDCard(spi, cs)
  • Make directories
>>> os.mkdir('/sd/CircuitPython/')
>>> os.mkdir('/sd/CircuitPython/SD_Card')
  • Add code to path
>>> import sys
>>> sys.path
['', '/', '.frozen', '/lib']
>>> sys.path.append("/sd")
>>> sys.path
['', '/', '.frozen', '/lib', '/sd']
>>> os.listdir('/sd/CircuitPython/SD_Card')
[]

Factory Test

  • Test cards using this procedure
  • MMBASIC is already set up on the card

Equipment

  • Unit Under Test (UUT)
  • VGA monitor
  • Stereo amplified speakers
  • PS/2 keyboard
  • MBASIC SD card
  • Raspberry Pi Pico
  • PC running TeraTerm
  • If optional port expander is installed

Test SD card interface

  • Type
files
  • Returns
A:/
   <DIR>  basic
   <DIR>  bmps
   <DIR>  demos
   <DIR>  games
   <DIR>  jpegs
   <DIR>  lbcards
   <DIR>  performance
   <DIR>  wave
8 directories, 0 files

Test Sound

chdir "/wave"
play wav "sample4.wav"

  • Verify sound comes out of both speakers
  • Stop with
play stop

Test Keyboard

  • Type on keyboard
  • Verify keys show up on VGA

Test VGA

  • Type
chdir "/demos"
load "Colours.bas"
run

  • Verify 16 distinct colors on VGA
  • Type
mode 1

Test GPIO (Rev 2 card) (if optional MCP23017 is installed)

  • Connect LED-32 card to J1
  • Runs GPIO16-01.bas
    • Rev 1 card requires edit to reverse the following change

PiPicoMite Rev1 vs Rev2.PNG

  • Type
chdir "/lbcards/GPIO16"
load "gpio16-01.bas"
run

  • Board will display
Looping through LEDs
Hit a key to stop
  • Verify that all LEDs blink
  • Any key will stop the program

Test 5V in

  • Connect USB B to 5V (or PC)
  • Remove USB Micro cable
  • Card should continue to run

Test I2C (Rev 2 card)

PiPicoMite01 RTC P1080357 Cropped 720px.jpg

PiPicoMite01 J8 I2C.PNG

  1. I2C0SCL wired to RTC SCL
  2. I2C0SDA wired to RTC SDA
  3. VCC wired to RTC VCC
  4. GND wired to RTC GND

RTC PartsSide.PNG

  • If RTC is not configured, type
option system i2c gp0, gp1
rtc settime YYYY, MM, DD, HH, MM, SS

  • Check time
rtc gettime
print time$

  • Verify RTC time works

Issues

Rev 2

  • Re-sequenced jacks and capacitors reference designators to left-to-right/top-to-bottom order
    • In sequential order for easier finding during assembly
  • Fixed on-board MCP23017 I2C SDA/SCL pins order
  • Added I2C Interface Header
  • Moved Vcc to the end of the GPIO connector
  • Checkout showed card is fully functional with no rework

Rev 1

  • Tested and working
    • Pico boots and runs
    • VGA passes Colours.bas test
    • PS/2 can type
    • SD Card loads files
    • Audio plays wav files

Issue with I2C connections to MCP23017 - Rework

  • SDA, SCL swapped to MCP23017
  • Cut etch solder side Pico pin 19 (to U2-12)
  • Cut etch solder side Pico pin 20 (to U2-13)
  • Cuts are done on rear side (CAD)
  • Verify cuts with ohmmeter

PicoMite01 X1 Rework I2C2.PNG

PiMicoMite01 P18202 Cuts Jumpers.jpg

  • Jumpers
  • Add wire Pico pin 19 to U2-13 (GP14)
  • Add wire Pico pin 20 to U2-12 (GP15)
  • Glue down wires with small dots of Superglue

PiMicoMite01 P18202 720px Jumpers.jpg

Prototype Build

PicoMite Proto P18159 720px.jpg

Assembly Sheet